Date:

Create a Custom Slackbot LLM Agent with NVIDIA NIM and LangChain

Building Custom Slackbots with NVIDIA NIM Microservices

Define Your Requirements

To create a custom Slackbot with NVIDIA NIM microservices, start by defining the requirements of your agent. This includes determining the types of tools you want to integrate, the workflows you want to automate, and the user experience you want to provide.

In this example, we’ll create a Slackbot that uses natural language processing (NLP) and machine learning (ML) models to answer user queries and perform tasks.

Create the LLM Agent

To create the LLM agent, you’ll need to choose an NLP model and define the tools and prompts used in the agent. For this example, we’ll use the NVIDIA LLaMA model and the LangChain library.

import os
from langchain import AgentWithLLM
from langchain.prompts import PromptTemplate

# Define the LLM agent
llm_agent = AgentWithLLM(
    llm="llama-7B-3", 
    devices=["cuda:0"]
)

# Define the prompts and tools used in the agent
tools = []
prompt = PromptTemplate.from_template("This is the prompt")

Save Interactions in Amazon Aurora PostgreSQL

To save interactions between the user and the agent, you’ll need to connect to an Amazon Aurora PostgreSQL database and save the interactions in a table. Here’s an example of how you can do this:

import psycopg2

# Connect to the database
conn = psycopg2.connect(
    dbname=os.getenv('DB_NAME'),
    user=os.getenv('DB_USER'),
    password=os.getenv('DB_PASSWORD'),
    host=os.getenv('DB_HOST'),
    port=os.getenv('DB_PORT')
)

# Create a cursor object
c = conn.cursor()

# Define the table structure
c.execute("""
    CREATE TABLE IF NOT EXISTS history (
        user_id INTEGER,
        thread_id INTEGER,
        channel_name TEXT,
        message_text TEXT,
        response TEXT
    )
""")

# Save an interaction
c.execute("INSERT INTO history VALUES (%s, %s, %s, %s, %s)",
          (user_id, thread_id, channel_name, message_text, response))
conn.commit()

Managing Agent Interactions and Memory

To manage agent interactions and memory, you can use a memory service such as Amazon DynamoDB. This will allow you to track conversation sessions and maintain context.

import boto3

# Create a DynamoDB resource
dynamodb = boto3.resource('dynamodb')

# Create a DynamoDB table
table = dynamodb.create_table(
    TableName='SessionTable',
    KeySchema=[
        {
            'AttributeName': 'SessionId',
            'KeyType': 'HASH'
        }
    ],
    AttributeDefinitions=[
        {
            'AttributeName': 'SessionId',
            'AttributeType': 'S'
        }
    ],
    BillingMode='PAY_PER_REQUEST'
)

# Create a session object
session = dynamodb.Table('SessionTable')

Next Steps and Enhancements

To further optimize your Slackbot, consider the following enhancements:

  • Integrate more NLP and ML models to improve the agent’s abilities.
  • Add more tools and prompts to the agent’s vocabulary.
  • Implement error handling and exception handling to handle unexpected errors and edge cases.
  • Optimize the agent’s memory usage by using a memory-efficient storage solution.

Keep Exploring Beyond Custom Slackbots

AI agents are transforming enterprise applications by automating tasks, optimizing processes, and boosting productivity. NVIDIA NIM microservices offer a seamless way to integrate multiple agents and tools, enabling businesses to create tailored AI-driven solutions.

Latest stories

Read More

LEAVE A REPLY

Please enter your comment!
Please enter your name here